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Abstract—Nonlinear systems and circuits, while required for
many applications, presently require a design procedure that is
often complex. In many cases, the design process is either based
upon measurements or complex nonlinear models. This paper
presents periodicity preservation (PP) and time invariant PP
(TIPP) system theory as a simple way to characterize behavior for
a signi cant class of nonlinear systems. PP systems preserve signal
periodicity and are conducive to modeling harmonic coupling.
When linearized to small perturbations, the harmonic coupling
is described by the Jacobian about the operating point. The
harmonic coupling weights, which are elements of the Jacobian,
can be measured experimentally. For some TIPP systems such as
LTI systems and memoryless nonlinearities, a single experiment
suf ces to determine the harmonic coupling weights. Other PP
systems, including mixing and linear time variant systems, require
more experimental queries. TIPP system theory is foundational
to the theory of X-parameters®, S-functions and polyharmonic
distortion.

Index Terms—Af ne approximation, harmonic coupling, har-
monics, nonlinear systems, power ampli er design, Wirtinger
calculus.

I. INTRODUCTION

I N disciplines requiring ampli ers, such as wireless,
aerospace [1]–[3], radar [4] commercial communications

[5], and electronic devices [6]–[8] we can be required to op-
erate in nonlinear regimes to provide adequate output power
for required performance. As circuits are driven into nonlinear
regions of operation, the signal spectrum expands based on the
harmonic coupling characteristics of the system. Understanding
the nonlinearities of the system, as manifested in the harmonic
coupling, can be essential in understanding perturbations about
the operating point. In the wireless area, for example, tighter
regulatory constraints for the spectrum are being placed on
both wireless communications and radar due to the increasing
demand for bandwidth for broadband wireless systems and
applications [1]. The desire to conserve energy by operating
ampli ers with higher ef ciency decreases the linearity of the
ampli er. As the ampli er becomes nonlinear, the harmonic
transfer characteristics of the system cause expansion of the
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spectrum due to intermodulation. As a result, being able to
predict the harmonic coupling of a nonlinear DUT is important
in many applications. Harmonic distortion [3], [9] including
AM/AM and AM/PM distortion [10] are examples. In power
and energy systems, nonlinear power converters often create
signi cant amounts of harmonic distortion, causing “dirty”
power to be generated. Understanding the nonlinearities of
the power converter systems can allow analysis and potential
development of compensation methodologies for the nonlin-
earities, allowing cleaner power signals to be generated. In a
variety of signal processing and waveform diversity applica-
tions, the ability to adjust a waveform to compensate for system
nonlinearities is also an expected useful result from accurate
characterization of nonlinear systems.
Groundbreaking nonlinear system harmonic coupling char-

acterizations [11]–[15] such as VIOMAP [15], S-functions
[16]–[20], polyharmonic distortion (PHD) models [22]–[27]
and X-parameters® [28]–[39] have been offered as approaches
to the “black-box” modeling of nonlinear devices. They differ
from more traditional nonlinear models such as those of
Volterra & Norbert Wiener [40]–[45] and Hermite [46]. The
PP model is applicable to small periodic input perturbations
and allows characterization using straightforward harmonic
measurements that can be performed in the laboratory. These
models have been shown to be effective tools for predicting
the nonlinear behavior of RF front end systems in simulations.
X-parameters® are measured by Agilent’s PNA-X series of
microwave network analyzers.
Our presentation of harmonic coupling uses a single input-

single output system con guration. In the sense parameters
can be viewed as consisting of two Thevinin circuits coupled
with dependent voltage sources [47], the single port character-
ization can be extended straightforwardly to two or more ports
[7].
Linear time-invariant (LTI) systems have a rich theoretical

foundation from which insightful characterization can be ex-
tracted. Despite their widespread use, there exists no similar
foundational, “from rst principles” model from which the har-
monic characterization of nonlinear systems are made. In this
paper, we propose such a theory for one port networks where
signal periodicity is preserved.

II. FOUNDATIONS
We denote a nonlinear system by the operator so that

(1)

where is the stimulus and is the response. The oper-
ator is general in the sense that it can represent in principle,
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for example, a wideband system, a system with memory, time
variant systems, narrowband systems and even noncausal non-
linear systems.
Consider, then, the perturbation of a nonlinear system oper-

ation about the operating point in (1) to
. If the nonlinear operator is suf ciently smooth about

the operating point we can make the af ne approximation

(2)

where the partial derivative is taken at the operating point. The
term can be viewed as the contribution of a
differential stimulus, , at to an incremental change
in the response. The weighted super-position of these contribu-
tions are then used to approximate the entire perturbation re-
sponse, i.e.,

(3)

The term is the Jacobian of the transformation.
Circuit Jacobians are commonly used to perform harmonic load
balance [43], [48], [49].
De ne

(4)

where denores Fourier transformation. The inverse transform
of (4) is

(5)

The superposition in (3) can be represented in different mix-
tures of time and frequency Jacobians.

(6)

(7)

(8)

The four Jacobians are related by Fourier transforms. The
relationship among the Jacobians is shown in Fig. 1. Detail
derivation of (6) through (8) and the entries in Fig. 1 are in
Appendix A. Unconnected nodes in Fig. 1 are related by a two
dimensional Fourier transform. For example

Fig. 1. The four Jacobians in time and frequency and their relationships using
Fourier transforms. The Fourier transform arrow depicts a negative sign on the
exponent of the Fourier transform kernel as in (4).

Theorem 1: Linear Systems: For linear systems [50]–[53], the
Jacobian characterization in (3) and (6) through (8) are exact.
Furthermore, for linear systems the Jacobian is equal to the im-
pulse response of the possibly time variant [54]–[57] system,
i.e.,

where is the Dirac delta. The proof is in Appendix B.
Example 1: Let

where is a scaling constant. The system is linear, time
variant, and

where the unit step is for and zero otherwise.
Although the system operator is applicable to many non-

linearities, it takes on a convenient form when the system has
no memory.
Theorem 2: Memoryless Nonlinearities: Consider the non-

linearity be de ned by a memoryless nonlinearity i.e.,

(9)

Then

(10)

and
(11)

Proof: The result in (10) follows immediately from the
chain rule of differential calculus using
. Then (11) follows from (3).
Example 2: Exponential Nonlinearity: To illustrate af ne

modeling of a memoryless nonlinear system in continuous
time, let

(12)
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Fig. 2. Af ne approximation of the exponential nonlinearity in (12) for , and equal to the unit period sinusoid shown in the left plot with a
dashed line. The perturbation, , is the square wave shown on the left as is the sum . In the middle plot is shown the unperturbed output, ,
the true output, , and the af ne approximation where is given in (13). On the right is a close-up of the shaded
region in the middle plot.

so that

where and are real constants. Since , (11)
becomes

(13)

An example of this af ne approximation is shown in Fig. 2.
Even though the perturbation is a signi cant percentage of am-
plitude of the operating point signal, the af ne approximation is
seen graphically to give a fair characterization.

III. PERIODICITY PRESERVATION SYSTEMS
A linear time-invariant LTI system, when stimulated by a si-

nusoidal source will have all of its voltages and currents os-
cillating at the same frequency albeit at different magnitudes
and phases. Phasor analysis, a staple of undergraduate engi-
neering education, keeps track of these two quantities. A gener-
alization of this class is periodicity preservation (PP) systems.
When stimulated by a periodic stimulus every voltage and cur-
rent within the system oscillates periodically with the same pe-
riod as the stimulus.
A signal, , is periodic if there exists a period, , such that

for all . The system de ned in (1) is PP if the
response, , is periodic with period, , for all periodic stimuli
with period, . A system can be PP for all periods as is the case
for a memoryless nonlinearity, or for a single period as is the
case when the system contains an independent periodic source.
For small perturbations in the stimulus, the response perturba-

tion can be estimated using experimentally generated harmonic
coupling weights (HCWs).
The Fourier series [52] of a periodic signal is

(14)

where is the signal’s period. The Fourier series coef cients
are

(15)

and means integration over any period of .
Here are examples of some familiar systems that are PP and

the relationship between the input and output Fourier series co-
ef cients.
• Addition. Let denote a periodic function with the
same period, , and with Fourier coef cients . If

, then has coef cients .
• Linear Systems. As we will show in Theorem 3, for time
variant linear PP systems, the harmonic coupling weights
can be derived from the knowledge of the system impulse
response, .

• Filtering. Let denote an arbitrary impulse response
of an LTI system. If , then the Fourier
coef cients of are multiplied by the system frequency
response, i.e., they are equal to where

is the Fourier transform [40] as in (4). The harmonic
coupling is then as shown on the left in Fig. 3. There is
no harmonic cross coupling. The system impulse response,
which can be measured in a single experiment, therefore
completely characterizes the harmonic coupling weights.

• Memoryless Nonlinearity: Let denote an arbitrary
function. If then the Fourier coef cients of

are

(16)

Only higher integer harmonics are generated. The second
harmonic of the input, for example, can contribute only to
the even harmonics of the response. A saggital diagram
of the harmonic coupling in this case is represented in the
middle of Fig. 3.
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Fig. 3. Saggital diagrams of cross harmonic coupling for the rst 8 harmonics
for (left) LTI systems, (middle) memoryless nonlinear systems, and (right) gen-
eral PP systems. The left side denotes the harmonic count of the stimulus and
the right the response harmonic to which contributions are made. In the most
general PP case, shown on the right, the harmonic coupling can be exhaustive.

• Mixers: If , then the Fourier series coef-
cients of are the discrete convolution of the Fourier
coef cients of the two signals

As shown on the right in Fig. 3, mixing (multiplying) si-
nusoids can create harmonics and subharmonics. A cosine
with frequency multiplied by another with frequency
, for example, will produce as a component a beat fre-

quency sinusoid with lower frequency .
All cascading, multiplicative and additive combinations of PP
operations likewise constitutes a PP system.
Examples of linear time variant mappings that are not PP sys-

tems include coordinate distortion, e.g., and many
integral transforms [52], [53], e.g., a Laplace transform [52],
[58], [59] and the Mellin transform
[52], [60], [61], .

IV. HARMONIC COUPLING IN PP SYSTEMS
Harmonic coupling in PP systems addresses the manner in

which the harmonics of stimulus perturbations contribute to the
harmonic changes in the response. A periodic stimulus with
Fourier series coef cients is shown in Fig. 4(a). The re-
sponse is a periodic signal with Fourier coef cients . This
de nes the operating point of the nonlinear mapping. When the
input is perturbed to a signal with Fourier series coef cients

as shown in Fig. 4(b), the response is periodic with
coef cients . Harmonic coupling determines the im-
pact of the input perturbation on the output perturbation

. For small perturbations, the harmonic coupling can be ex-
pressed through an af ne approximation.
Af ne modeling of perturbations of PP systems follows a Ja-

cobian characterization similar to (2), except that mapping is
considered only over a period, say . Perturbation of
the PP system is limited to periodic signals that are the same pe-
riod as the operating point. Instead of (2), for example, we have

Fig. 4. Harmonic coupling in periodicity preservation systems.

Fig. 5. The four Jacobians in terms of time and Fourier series coef cients for
PP systems. The notation DFS denotes Fourier series—the synthesizing of con-
tinuous time periodic signals from their Fourier series coef cients.

so that (3) becomes

(18)

Akin to (3) and (6) through (8), we summarize the af ne PP ap-
proximations for estimating the output perturbations as a func-
tion of the input perturbations.

(19)

(20)

(21)
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Fig. 6. A speci c instance of Example 3 using the nonlinearity in (23). Both the input, , and perturbation , over a single period are the square waves
shown on the left for 100 harmonics, i.e., using . The unperturbed output of TIPP system, , is shown in the middle plot. The
perturbed output, and the af ne approximation, , is shown in the middle gure. On the right is a close up of the shaded area in the middle
plots. In all cases, 100 harmonics are used.

(22)

Likewise, akin to Fig. 1, the relations among the Jacobians are
shown in Fig. 5. Rather than Fourier transforms, the Jacobians
are related by Fourier series relationships as in (14) and (15).
Equations (20) though (22) and the entries in Fig. 5 are derived
in Appendix C.
Of speci c interest is (22) which is the linearization of

the harmonic coupling of the perturbation. A small pertur-
bation on the harmonic makes contributions to all the
response harmonics, . The coupling is given by the Jaco-
bian . These are the harmonic coupling weights
(HCWs). S-functions [16]–[20] and X-parameters [28]–[39]
are HCWs.
The most straightforward approach to estimate the HCWs is

shown in Fig. 4(c). The input is perturbedwith a small amplitude
tickle tone at the th input harmonic. In general, all of the
output harmonics are perturbed from to . The ratio
of the response perturbations to the stimulus perturbation can be
used to estimate the HCWs . The
experiment is repeated for different values of .
Experimental methodologies for measuring HCWs is the

topic of a forthcoming paper [67].
Example 3: Mixed Squaring: As an example of an af ne ap-

proximation among Fourier series coef cients, consider the PP
operation

(23)

The Fourier coef cients are given by the convolution
where . For a perturbation to ,

the result is

A speci c example is shown in Fig. 6. Details are in the caption.
Theorem 3: Linear Systems: For linear PP systems, the char-

acterization in (19) through (22) are exact. The HCWs are given

by the impulse response of the (possibly time variant) linear
system. Indeed, any linear system with impulse response
can be made a PP system using

(24)

where for and is zero otherwise.
The proof is in Appendix D.
Theorem 4: Memoryless Nonlinearities: A special class of

PP systems is characterized by a memoryless nonlinearity (see
(19))

(25)

Then the harmonic coupling weights are

(26)

where is the Fourier series coef cient of the periodic signal
.

(27)

A proof is in Appendix E.
As a consequence of Theorem 4, the harmonic coupling

from a memoryless nonlinearity can always be expressed as a
discrete convolution of Fourier series coef cients. Substituting
(26) into (22) gives

and the asterisk denotes the discrete convolution operator. In the
time domain, this is the same as the relationship in (11) when
signals are periodic.
The Jacobian represented by (26) is Toeplitz. Knowledge of

one row of the correspondingmatrix for , i.e., , suf ces
to specify the entire Jacobian. This is of speci c signi cance
when the HCWs are determined experimentally. Determination
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of a single row (or column) of the Jacobian HCWs of a memory-
less nonlinearity allows speci cation of all HCWs. The required
number of experiments is therefore signi cantly reduced.

V. NONANALYTICITY

An implicit assumption thus far is that the different manifes-
tations of the signals and systems are analytic. In terms of the
Fourier coef cients, the stimulus can be expressed in terms of
and does not require use of the conjugate, . The necessity

of consideration of the analyticity of PP type operators in af ne
approximations is well known [20], [62]. Harmonic coupling,
however, never requires nonanalytic treatment when the under-
lying signals and systems are real.
There are common PP operators that are not analytic, for ex-

ample . The relationship in the Fourier domain in
this case is the correlation [52]

(28)

To generalize to such cases, Wirtinger calculus [64]–[66] can
be used. The formalism emerging from Wirtinger calculus is
that a variable and its conjugate, i.e., and , are treated as
separate variables. In lieu of approximation in (22), for example,
Wirtinger calculus uses Jacobians of the form

(29)

From (28), for example, and
.

When not a function of the conjugate, , the second term in
(29) is zero and (29) becomes the conventional HCW relation-
ship in (22).
However, when signals are real any expression that contains

conjugate terms in the stimuli can be rearranged to not include
conjugate terms. As a consequence, analyticity is assured and
the use of Wirtinger calculus is never required. If a periodic
signal is real, its Fourier series coef cients are conjugately sym-
metric. For real , then, [52]

(30)

Any conjugate component in a series expression can be
removed using this relationship. When is real, for ex-
ample, (28) can be written without the use of the conjugate as

. In this form
and .
Likewise, the conjugately symmetric property can be used to

manipulate nonconjugate terms into conjugate terms in the case
of real signals. The Fourier series in (2) can be written as

Reversing the summation order on the sum over negative argu-
ments and using (30) gives

Using this expression, the Jacobian expansions is no longer
analytic and partials are required over conjugated variables.
Wirtinger based relationships, for example, is used in X pa-
rameters [18], [24], [28]–[39]. For real signals and systems,
however, the analyic expression in (22) suf ces.

VI. CONNECTIVITY AND OPERATIONS

The inversion of the impedance relationship
if it exists, is the admittance operator and

A given may not have a , e.g., corresponding to
. Likewise, a given may not have an inverse.

A dimensionless dependent source PP operator, , maps
equivalent units, i.e., and .
Consider the following connections.
• Series. If the same current, passes through two TIPP
operators, and , then the composite PP operator is

.
• Parallel. Let . Let

and, assuming all inverses
exist, where .

• Cascade. Two PP operators and , are in cascade when
the composite operator, , is

(31)

PP generalizations of familiar circuit operations follow, in-
cluding Kirchhoff’s law and current and voltage dividers.
1) Combining Cascade Operations: Consider the cascade

operation in (31). Let . Then

Likewise, let . Thus, the linearization of the
Fourier series coef cients is
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Fig. 7. On the left, an TIPP system is stimulated by a sinusoidal source, . Its Fourier series coef cients are . The response is with Fourier series
coef cients . Since the system is time invariant, an input shift of results in the output being shifted by the same amount. As shown in the right hand gure,
this corresponds to the Fourier series coef cients of both the stimulus and response being multiplied by the same exponential term.

where

Similar relationships exist for the other forms of the Jacobian.
For example, for harmonic coupling weights,

The HCW matrices of cascaded PP systems therefore multiply.

VII. TIME INVARIANCE

If a system operator is time invariant, then any shift operator
commutes with the operator in (1). Thus, for all , we have

For any nonlinear system, from (3),

(32)

For a time invariant system, the contribution of at
to is the same as the contribution of

at to . Thus,

and (32) becomes, for time invariant systems,

The Jacobian for unshifted signals thus also works for shifted
signals.
With reference to Fig. 7, Fourier transforming with respect to
gives

Also with reference to Fig. 7, applying the power theorem of
Fourier analysis [52] gives

Perturbing the input spectrum by a linear phase factor therefore
perturbs the response by the same factor.
For a time invariant periodic preservation (TIPP) system, the

analysis is similar. The harmonic coupling relationship in (22)
generalizes, for all , to

Thus,when characterizing harmonic coupling in a TIPP system,
the HCWs for unshifted periodic inputs can be used to nd the
HCWs for all shifted versions of the input. Both the operating
point and the perturbation are shifted by the same amount. This
is illustrated in Fig. 6.

VIII. EXTENSION TO MULTI-PORT SYSTEMS

The extension from one port systems to two or more ports
is straightforward. Through our choice of notation in (1), the
system stimulus is a current and the response is a voltage. The
system mapping, therefore has the same units as impedance
can be spectrally characterized by stimulus with a series of si-
nusoids at different frequencies and noting the amplitude and
phase shift of the response. The mapping, however, is more
general than an impedance allowing, of course, nonlinearities
but also dependent and independent sources. The operator is
not constrained by the homogeneity property of linearity [52].
A zero stimulus, for example, can yield a nonzero response. As
an example of a familiar system that is not an impedance, con-
sider a series RL circuit with an independent voltage source and
a mapping that can be written as

(33)

or, in the Fourier domain

Impedance is de ned as the ratio between a voltage and a cur-
rent phasor. Due to inclusion of the independent voltage source,
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, the ratio is not meaningful for this . In-
deed, cannot be conventionally characterized by an impulse
response. A sinusoidal stimulus does not generally result in a
sinusoidal response due to the independent voltage source. In
this sense, spectral characterization of through mapping of
response amplitude and phase variation to stimuli at various fre-
quencies will also not work. If, however, is periodic, then
is PP for periodic stimuli with the same period. Although not

necessarily the best way, the system can be accurately charac-
terized using HCW’s.
The characterization of PP systems is similar to LTI except

generalized to measuring coupling weights across the harmonic
spectrum for varying input tickle tones of various frequencies.
For a loaded two port, the cross port parameters are still charac-
terized by a mapping albeit the stimulus and response are not
at the same ports.
Reformulating HCW’s applied to circuits from current

stimuli to voltage stimuli or dimensionless stimuli is also
straightforward.

IX. CONCLUSION

We have shown the following.
• A class of systems, dubbed periodicity preservation (PP)
systems, can be characterized for small stimulus perturba-
tion using harmonic coupling weights (HCWs). The char-
acterization requires no model of the PP system.

• PP operations include addition, ltering, memoryless non-
linearity, shift, and mixing (multiplication).

• For linear and possibly time variant PP systems, the ap-
proximation of harmonic coupling weights gives exact
results.

• Cascade, series and parallel connections of PP operations
result in a composite PP system. The composite harmonic
coupling weights can be determined directly from the com-
ponents’ harmonic coupling weights.

• As LTI systems require a single stimulus-response pair
for complete characterization (e.g., the impulse response),
memoryless nonlinearity PP systems require only a single
stimulus-response characterization. Other PP systems typ-
ically require more.

• Any PP system with real stimuli and responses can be
characterized without the use of Wirtinger calculus. Con-
versely, taking advantage of the conjugate symmetry of
Fourier series coef cients of real signals, the harmonic
coupling weights can be placed in a form using Wirtinger
calculus.

• For a time invariant PP (TIPP) system, the complex ex-
ponential weighting invoked on input Fourier coef cients
results in the exact same weighting on the output Fourier
coef cients. Thus, for example, the TIPP characterization
for a cosine stimulus operating point can be used to eval-
uate the harmonic coupling weights for the same system if
the operating point were a sine.

• The HCWs corresponding to memoryless TIPP systems
display Toeplitz symmetry.

The PP systems are a useful type system class that includes
nonlinearities commonly encountered in practice, especially in

nonlinear engineering circuit and system design. Both time-do-
main and Fourier-domain af ne approximations can be used to
model the behavior of certain PP systems. PP and TIPP sys-
tems show promise for modeling large classes of nonlinearities
in many circuit design problems and nonlinear applications in
other engineering disciplines.

APPENDIX

A. Derivation of the Entries in Fig. 1
The Fourier transform of is .

(A1)

Setting

(A2)

we have using (A1)

Then

(A3)

This corresponds to the leftmost vertical arrow in Fig. 1. Typi-
cally, a negative sign is on the exponent of the time to frequency
Fourier transformation. This is not the case here, so the arrow
points up.
Using (A3) we can write, in lieu of (3)

(A4)

This is (6).
From (4)

(A5)

Fourier transforming gives

Therefore, and are Fourier
transform pairs as depicted in the top horizontal arrow in Fig. 1.
We then Fourier transform both sides of (3) to obtain (7)
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Applying (A5) to the Fourier transform of
gives

This corresponds to the bottom horizontal arrow in Fig. 1.
Fourier transforming both sides of (A4) then gives (8).
Lastly, consider the Fourier transform

This relationship corresponds to the rightmost vertical arrow in
Fig. 1.

B. Proof of Theorem 1
A linear system can be expressed as the superposition integral

[52]

where is the impulse response of the system,
Thus,

Therefore, we have the equality

where is given by precisely by

C. Derivation of the Entries in Fig. 5
The operating point input can be expressed by the Fourier

series

so that

(A6)

Using the Fourier series expansion of , (18) can be written
as

(A7)

But, using (A6), we have

This corresponds to the upper horizontal arrow in Fig. 5 and,
when substituted into (A7), we obtain (20).
The Fourier series coef cients for the output operating point

are

so that

(A8)

Likewise, the Fourier series coef cients of the output perturba-
tion are

Using (20)

Substituting (A8)

This is the expression describing harmonic coupling.

D. Proof of Theorem 3
A PP system is linear if
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Thus

and the response to a perturbed operating point is

where is given by (19). Equations (20)–(22) are alternate
descriptions of the same identity.

E. Proof of Theorem 4
Given (25), the response Fourier series coef cient is

Therefore from the chain rule of differentiation

where is de ned in (27).
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